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Abstract. In this paper we propose a novel approach for gesture mod-
eling. We aim at decomposing a gesture into sub-trajectories that are
the output of a sequence of atomic linear time invariant (LTI) systems,
and we use a Hidden Markov Model to model the transitions from the
LTI system to another. For this purpose, we represent the human body
motion in a temporal window as a set of body joint trajectories that we
assume are the output of an LTI system. We describe the set of trajecto-
ries in a temporal window by the corresponding Hankel matrix (Hanklet),
which embeds the observability matrix of the LTI system that produced
it. We train a set of HMMs (one for each gesture class) with a discrim-
inative approach. To account for the sharing of body motion templates
we allow the HMMs to share the same state space. We demonstrate by
means of experiments on two publicly available datasets that, even with
just considering the trajectories of the 3D joints, our method achieves
state-of-the-art accuracy while competing well with methods that employ
more complex models and feature representations.

1 Introduction

The detection, recognition and analysis of gestures is of great interest for the
computer vision community in well studied fields like surveillance [1], [2], [3], [4]
and human-computer interaction [5] and in emerging fields like assistive tech-
nologies [6], computational behavioral science [7], [8] and consumer behavior
analysis [9].

In this paper, we propose to represent a gesture as a temporal series of
body motion templates. A body motion template may be either an ordered set
of trajectories (i.e. trajectories of body parts such as hands, arms, legs, head,
torso) or motion descriptors (bag-of-words, histogram of flow, histogram of dense
trajectories, etc.) within a temporal window.

As for the gesture temporal structure, there are dynamics regulating the
sequence of motion templates; for example, handshaking may require the follow-
ing ordered sequence of movements: moving the whole body for approaching the
other person, raising the arm, and shaking the hand.

Many previous works have extracted global features for action recognition
and trained models for each gesture-class [10], [11], [12], [13]. Some works have
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focused on discriminative learning of models such as HMM [11], [14], [15] and
CRF [16], [17], [18]. Most of them assume the gestures “live” in different state
spaces. However, gestures may share body motion templates while having differ-
ent temporal structures. In this paper, each body motion template is assumed
to be the output of a linear time invariant (LTI) system and described by means
of a Hankel matrix, which embeds the parameters of the LTI system [19].

A gesture is modeled by an HMM where the observations are Hankel ma-
trices computed in a sliding window across time. In the following, we refer to
such Hankel matrices as Hanklets. Each hidden state of the HMM represents
an LTI system for which only a Hanklet is known. To account for the sharing
of body motion templates, we train a set of gesture models that have the same
state space but different dynamics, priors and conditional distributions over the
observed Hanklets. The parameters of the gesture models are jointly learnt via
a discriminative approach.

To summarize, the main contributions of this paper are:

– a novel gesture representation as sequence of Hanklets and
– a novel discriminative learning approach that allows different HMMs to share

the same state space.

We show how a gesture can be modeled as a sequence of outputs from atomic
LTI systems that are regulated by a Markov process. We describe each LTI
system in terms of a Hankel matrix. This is different from other approaches such
as [20], which represent body pose frame-by-frame. Instead the observations for
our model are body motion templates with an intrinsic temporal duration.

To evaluate our method, we implemented a version of the formulation that
takes 3D skeleton tracking data as input. Therefore, our body motion template is
a set of trajectories of the 3D joints within a temporal window. Fig. 1 shows ex-
amples of body motion templates and gestures. As the figure highlights, gestures
may share body motion templates. In experiments with two publicly-available
gesture datasets, our approach attains state-of-the-art classification accuracies.

The rest of the paper is organized as follows. In Section 2 we report previous
works in gesture recognition. In Section 3 we present our novel feature represen-
tation for body motion. In Section 4 we discuss our gesture model and present
inference and learning approaches. In Section 5 we present experimental results.
Finally, in Section 6 we present conclusions and future work.

2 Related Work

With the introduction of the Kinect sensor and the seminal work by Shotton,
et al.[21] for estimating the joint locations of a human body, there has been a
proliferation of works on gesture recognition. Most of these works introduce novel
body pose representations. Some works [20], [22] use only the joint locations,
while others [23], [24], mix descriptors from depth, motion and skeleton data.
These works in general use state-of-the-art machinery to learn the temporal
structure of gestures and/or to classify them.

Li et al. [24] proposed an action graph for depth action recognition. The
depth map is projected onto three orthogonal Cartesian planes. A sub-sampled
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Fig. 1. Samples for two gestures from the MSRA3D-Action dataset. In each box, the
first row shows the sequence of skeletons, the second row gives an idea of motion tem-
plates. Each image represents the super-imposition of skeletons detected in a temporal
window. The last motion templates in the two gestures are generated by the same
LTI-system during test; hence the corresponding action models share the same state.

set of points uniformly distributed are extracted and used as a bag of 3D points
to encode the body pose. Each of these bags is a node in the action graph, which
is used to model the dynamics of the actions. In Wang et al. [25], a 3D action
sequence is treated as a 4D shape and a Random Occupancy Patterns (ROP)
feature is extracted. Sparse coding and an Elastic-Net regularized classification
model are used to classify the sequences. In Vieira et al. [26], space-time oc-
cupancy patterns are adopted to represent depth sequences. The features are
computed by binarizing the space and time axes and computing what cells are
occupied. Then a nearest neighbor classifier is applied for action recognition. In
a similar way, Oreifej et al. [13] described the depth sequence as histograms of
oriented surface normals (HON4D) captured in the 4D volume, based on depth
and spatial coordinates. The quantization of the normals is non-uniform. Clas-
sification is performed by SVM classifier. In [27], each action is represented by
spatio-temporal motion trajectories of the joints. Trajectories are represented as
curves in the Riemannian manifold of open curve shape space; trajectories are
compaired by an elastic distance between their corresponding points in shape
space. Classification is performed by KNN on the Riemannian manifold. Other
works focus on body pose representation of the given the 3D joint skeleton. In
Xia et al. [20] a histogram of the locations of 12 manually selected 3D skeleton
joints (HOJ3D) is computed to get a compact representation of the body pose
invariant to the use of left and right limbs. LDA is used to project the histogram
and compute K visual words used as states of an HMM. In [22], the body pose is
represented by concatenating the distances between all the possible joint pairs
in the current frame, the distances between the joints in the current frame and
in the previous frame, the distances between the joints in the current frame and
in a neutral pose. PCA is applied for dimensionality reduction providing a de-
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scriptor called EigenJoints. Classification is performed by a naive-Bayes nearest
neighbor classifier. In Wang et al. [23], depth data and the estimated 3D joint po-
sitions are used to compute the local occupancy pattern (LOP) feature. The set
of features computed for a skeleton is called actionlet. Data mining techniques
are used to discover the most discriminative actionlets. Finally, a multiple kernel
learning approach is used to weight the actionlets.

Other methods combine the joint locations with visual information extracted
from the RGB images. For example, Sung et al. [28] combined RGB, depth and
hand positions, body pose and motion features extracted from skeleton joints.
HOG[29] is used as the descriptor for both RGB and depth images. Then, a
two-layer maximum-entropy Markov model is adopted for classification.

In contrast with previous works, we do not present a body pose representa-
tion. Instead we adopt the Hanklet representation [19] to describe body motion.
Our method only uses body part trajectories (such as locations of joints in a
skeleton) to represent a gesture as the output of a sequence of Linear Time In-
variant (LTI) systems. We use an HMM to model the transition from one LTI
system to another across time. HMM have been widely used for action model-
ing, for example in [20], [30], [31], [11], [32], [33]. Another model often used for
action recognition is Conditional Random Fields (CRF)[16],[17],[18], which is a
discriminative approach and has proven to be successful for recognition task. It
has been shown that discriminative approaches tend to achieve better perfor-
mance with respect to the standard HMM. Therefore, previous works [34],[35]
have tried to learn the parameters of the HMM with a discriminative approach.
In this paper, we adopt an HMM to model a gesture and learn its parameters in a
discriminative way. The main difference between our approach and the standard
HMM is that we allow classes’ models to share the same state space.

Our approach is related to both linear parameter varying model identification
[36] and switched system identification [37]. In linear parameter varying models,
the parameters of each autoregressive model may change over time based on
a scheduling variable. Our method may be considered as a discretization of
linear parameter varying models; we model the switching of the LTI systems as
a Markov process and, instead of estimating the scheduling variable, we infer
the atomic LTI system that may have generated the given observation. In this
sense, our method is more similar to piecewise models and Markovian jump
linear models [37], [38], [39] where there is a stochastic process that regulates
the switching from one LTI system to another. Unlike previous methods [38],
[39], our goal is not that of segmenting the sequence in outputs of different
LTI systems; instead, we parse the sequence with a sliding window of fixed
duration, and model probabilistically the switching among atomic LTI systems
to capture the temporal structure of the whole gesture. Finally, there is an
interesting connection with [40]. In [40], each video sequence is associated with
a dynamical model. Then a metric is learned in order to optimally classify these
dynamical models. Instead, we represent a video as a sequence of dynamical
models and learn the parameters of an HMM that may regulate this sequence
of atomic models.
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3 Gesture Representation

We propose to represent a gesture as a sequence of body motion templates each
one produced by an LTI system with unknown parameters. In our framework,
each LTI system is represented by a Hanklet corresponding to an exemplar out-
put. Associations between observed body motion templates and LTI systems is
performed by comparing Hanklets.

Differently than methods like [13], [25], [24], we do not propose a body pose
representation, but a new discriminative HMM model for gesture recognition.
The novelty of our work stands in the decomposition of a gesture into atomic
LTI systems by means of the decoding procedure used at inference time. In this
sense, our method implicitly models the gesture as a switched dynamic system
where each state is an LTI system. Furthermore, we formulate a discriminative
HMM that can model the transition from one LTI system to another.

In the following we summarize the approach proposed in [41] to represent a
trajectory and how we employ this descriptor for gesture representation.

3.1 Trajectory Representation by Hanklets

A trajectory may be represented as the output of a linear time invariant (LTI)
system. LTIs are dynamic systems where the state and the measurement equa-
tions are linear, the matrices A and C are constant over time, and wk ∼ N(0, Q)
is uncorrelated zero mean Gaussian measurement noise:

xk+1 = A · xk + wk;

yk = C · xk. (1)

In these equations, xk ∈ Ru is the u-dimensional hidden state, while yk ∈ Rv
is the v-dimensional measurement. To associate output measurements with the
generating LTI system, we should apply system identification techniques to es-
timate the parameters of the LTI system, as in [42]. Instead, in our approach,
we describe the trajectories produced by the dynamic system through a Han-
kel matrix. Given a sequence of output measurements [yo, . . . , yT ] from (1), its
associated (block) Hankel matrix is

H =


y0, y1, y2, . . . , ym
y1, y2, y3, . . . , ym+1

. . . . . . . . . . . . . . .
yn, yn+1, yn+2, . . . , yT

 , (2)

where n is the maximal order of the system, T is the temporal length of the
sequence, and it holds that T = n+m− 1.

As explained in [41], the Hankel matrix embeds the observability matrix Γ
of the system, that is H = Γ ·X, where X is the sequence of hidden states of the
system. Therefore H provides information about the dynamics of the temporal
sequence. As H is also invariant to affine-transformations of the trajectory points
[41], it is particularly appealing to adopt such a descriptor for gesture recognition.

In contrast with [41], which proposes a standard bag-of-words and SVM ap-
proach on Hanklet histograms, we propose to model the dynamics that regulates
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sequences of Hanklets. We adopt a trajectory representation that is similar to
the one used in [41]; while [41] computes a histogram of Hanklets for each action
based on the set of detected dense trajectories, we compute a single Hanklet
based on all the body joints together in a sliding window approach.

For the sake of demonstrating our idea, we use the 3D joints of the detected
skeletons as input to our algorithm; the Hankel matrices are computed using
the joint locations in a sliding window, where the temporal window is composed
of T frames and the shift of the window happens frame by frame. We believe
that the approach may be extended to the case when the skeleton is unknown,
for example by detecting and tracking the body parts or correlated features
(i.e. optical flow) from the RGB data. The same framework may also be used
with frame-based body pose representations. These extensions remain a topic of
future investigation.

3.2 Hanklet Computation and Comparison

A Hankel matrix is a powerful mathematical tool that embeds salient informa-
tion about the dynamics of trajectories generated by LTI systems with unknown
parameters. Hankel matrices have been successfully used in previous works on
action recognition [41], tracking [43] and dynamic textures [42]. Our approach
differs from these previous works in that we use the Hankel matrix space as an
intermediary space where it is possible to compare body motion templates and
LTI systems. In contrast to [41], which considers the velocities as measurements,
we directly consider the joint locations as input measurements. We have empir-
ically found that this representation is more informative than the one suggested
in [41] for our gesture recognition task. We have also noticed that a better lo-
cal representation (i.e. within the temporal window) is achieved by considering
Hankel matrices with order lower than 5.

Given a temporal sequence [yo, . . . , yT ], where yt is a vector of the concate-
nated 3D joint locations in the skeleton at time t, and T is the number of frames
in the temporal window, we center the sequence by taking off its average as in
[41]. We compute the Hankel matrix and normalize it by its Frobenius norm.
Our Hanklet representation for the given temporal sequence is the following:

Hp =
Hp

||Hp||F
. (3)

In contrast to [41], which considers the covariance matrix Hp ·H ′p to repre-
sent a trajectory, we directly use the Hankel matrix Hp. The matrix Hp ·H ′p is
invariant to the direction in which the state changes and may not be suitable
for gesture recognition. The Frobenius norm may be computed as:

||Hp||F =

√∑
i,j

(Hp(i, j)2). (4)

Once we represent the trajectories by means of their corresponding Hankel
matrices, we need a way to establish if two trajectories have been generated by
the same LTI system or not. We do this by comparing their Hankel matrices. To
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convey the degree to which two Hanklets may be considered similar, we use an
approximate score similar to that proposed in [41], defined as follows:

d(Hp, Hq) = 2− ||Hp +Hq||F . (5)

4 Hanklet-based Hidden Markov Model

We assume that a gesture is a sequence of body motion templates produced
by a set of LTI systems. Each LTI system is represented by a Hanklet S of an
exemplar output sequence that the system has produced. The probability that
a given sequence of measurements is produced by an LTI system is modeled by
the following exponential distribution:

p(H|S) = λ · e−λ·d(H,S) (6)

where H is the Hanklet corresponding to the given sequence of measurements, S
is the Hanklet used for representing the LTI system, d(H,S) is the dissimilarity
score in Eq. (5), λ is a parameter to learn.

We assume that the measurements in a gesture come from a sequence of
LTI systems. The switching process that generates a gesture is assumed to be a
Markovian process and therefore we employ an HMM to model the transitions
from one LTI system to another. The transition matrix T is a stochastic matrix
where T (i, j) = p(Sjt |Sit−1), and is a parameter of the model. The prior proba-
bility π, such that π(i) = p(Si0), is the probability that the measurement in the
first temporal window (t = 0) has been generated by the i-th LTI model.

Given these definitions, the joint probability of the sequence of N observed
Hankel matrices H = {Ht}Nt=0 (computed from the observations) and the se-
quence of LTI systems, represented by means of the corresponding Hanklets
S = {St}Nt=0 is:

p(H,S|T, π, Λ) =

N∏
t=0

p(Ht|St) ·
N∏
t=1

P (St|St−1) · π(S0) (7)

where Λ = {λS} is the set of parameters λ associated with each state.

4.1 Inference and Classification

Given a gesture model with parameters {Λc, T c, πc}, where c is the label of the
gesture to which the model refers, the inference of the sequence of LTI-systems
is performed via the Viterbi algorithm[44]. This well-known algorithm is based
on Dynamic Programming and attempts to maximize the log-likelihood of the
joint probability of the states and the observations sequentially.

The inference of the label to assign to a sequence of measurements is per-
formed by maximum likelihood. The predicted label CP is computed solving:

CP = min
c
{− log p(H,Sc|T c, πc, Λc)}. (8)

The label corresponding to the model providing the highest likelihood is assigned
to the sequence of observations.
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Algorithm 1: Inference of Gesture-Class

Input : {Ht}Tt=0 test sequence;
{Λc}Nc=1, {T c}Nc=1, {πc}Nc=1 parameters of the HMMs;
{Si}Mi=1 state space

Output: CP predicted label

for i← 1 to M do
for j ← 1 to T do

D(i, j)← d(Si, Hj) (eq. 5);
end

end
for c← 1 to N do

LL(c)←applyViterbi(D,Λc, T c, πc)
end

CP ← argmin(LL)

Algorithm 1 shows how the classification of an input Hanklet sequence is
performed. As all the models share the state space, it is necessary to compute
the matrix of dissimilarity scores between the Hanklets and the shared states
only once. Then the Viterbi algorithm is applied N times, once for each gesture
class. The negative log-likelihood score is normalized to account for different
lengths of the sequences.

4.2 Discriminative Learning

The traditional learning approach for the HMM parameters uses the Baum-
Welch algorithm [44]. In many applications, e.g. [34],[35], it has been demon-
strated that discriminative learning of the HMM parameters results in better
performance. We therefore apply this approach to the parameter learning of our
models. The learning procedure learns the parameters of all the HMMs simul-
taneously while encouraging correct predictions and penalizing the wrong ones.

Discriminative learning tries to minimize the mis-classification measure for
an input training sample H defined as follows:

loss(H) = max{0, gk(H,Λk, T k, πk)−min
j 6=k
{gj(H,Λj , T j , πj)}+ 1} (9)

where gk represents the negative log-likelihood returned by the correct model k,
and minj{gj} is the negative log-likelihood of the most competitive but incorrect
model. The difference of these two terms represents the margin of the classifier
and the loss function in Eq. 9 is the hinge loss. Minimizing this mis-classification
error corresponds to increasing the inter-class distances on a training set. When-
ever the loss is greater than 0, then the prediction is incorrect and it is necessary
to update the parameters. The negative log-likelihood g is defined as:

g(H,Λ, T, π) = − log(p(H,S|T, π, Λ)) = (10)

−
N∑
t=0

log(p(Ht|St))−
N∑
t=1

log(P (St|St−1))− log(π(S0)), (11)
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which may be written as:

g(H,Λ, T, π) =

N∑
t=0

(λSt
· d(Ht|St)− log(λSt

)−
N∑
t=1

αSt|St−1
− βS0

, (12)

where the variables α and β represent the logarithms of the transition probabili-
ties and priors respectively, and we use Eq. (6) for the observation probabilities.
As the priors and the transition probabilities must be positive and must sum
to one, the original optimization problem should be constrained. As in previ-
ous works, such as [45], we consider that α and β do not have any constraints
and perform the optimization directly on these variables. Before doing inference,
these variables are transformed back to obtain the parameters of the model π
and T . In particular, for π we get:

π(S) =
eβS∑
s
eβs

. (13)

A similar transformation holds for T .
We minimize the loss over all the samples in the training set via a quasi-

Newton strategy with limited-memory BFGS updates where a block-coordinate
descent approach is used in turn for updates to the parameters Λ, T and the
prior π. In practice we have observed that the block-coordinate descent results
in faster convergence of the training procedure.

Algorithm 2 shows the pseudo-code for our training procedure. After ini-
tializing all the models with the same parameters (uniform distributions for T
and π and 1 for λ), the method iteratively minimizes the objective function f(·)
by block-coordinate descent. The function check convergence() checks if some
convergence criteria is met. The variable p set is used to identify the active pa-
rameter subset, that is the subset of parameters considered when minimizing the
objective function within the block-coordinate schema. Algorithm 3 summarizes
the main steps to evaluate the cumulative loss function over the training set.
For each sample, it computes the negative log-likelihood of the correct model
and the negative log-likelihood returned by the most likely incorrect model. If
the loss is positive, then the models have produced a wrong prediction; therefore
the gradients are accumulated and returned to the L-BFGS algorithm to update
the parameters. The variable p set allows us to accumulate the gradients only
for the current active parameter subset.

4.3 Initialization of the State Space

The state space initialization is performed by considering, for each class, a subset
of video sequences in the training set. Then the corresponding Hanklets are
clustered via K-medoids and the K medoids are used to compose the state space.
Therefore, given N classes, the state space has a dimensionality equal to K ·N .

We have tested two strategies: online learning the state representation while
learning the parameters of the model versus not learning the state representation.
Learning of the state is done by re-clustering the Hankel matrices, that is, for
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Algorithm 2: Discriminative learning of the Parameters

Input : {Yi}Wi=1: training set of Hanklet sequences;
labels: gesture-classes for each training sequence;
{Si}Mi=1 state space

Output: {Λc}Nc=1, {T c}Nc=1, {πc}Nc=1 parameters of the HMMs;

%% Parameter initialization;
for c← 1 to N do

λc ← all-ones vector of dimension M ;
T c ← M x M stochastic matrix with uniform distribution on each row;
πc ← uniform distribution over the M states;

end

iter ← 1;
converged ← false;

%% Apply Block-Coordinate Gradient Descent to each active parameter subset
(p set);
while iter < Max Iter & !converged do

%% Optimize with respect to {Λc}Nc=1;
p set ← lambdas;
{Λc}Nc=1 ← argmin f({Yi}Wi=1, labels, {Λc}Nc=1, {T c}Nc=1, {πc}Nc=1, {Si}Mi=1,
p set);

%% Optimize with respect to {T c}Nc=1;
p set ← transition matrices;
{T c}Nc=1 ← argmin f({Yi}Wi=1, labels, {Λc}Nc=1, {T c}Nc=1, {πc}Nc=1, {Si}Mi=1,
p set);

%% Optimize with respect to {πc}Nc=1;
p set ← priors;
{πc}Nc=1 ← argmin f({Yi}Wi=1, labels, {Λc}Nc=1, {T c}Nc=1, {πc}Nc=1, {Si}Mi=1,
p set);

converged ← check convergence({Λc}Nc=1, {T c}Nc=1, {πc}Nc=1);
iter ← iter + 1;

end

each state we consider all the observed Hankel matrices that have been generated
by that state and we compute the medoid of this set of matrices. Our experiments
have shown a small change in the performance when learning vs non-learning
the state representation. As learning the state representation increases the time
complexity, in this paper we do not update the state space online.

In our implementation the number of states is defined a priori. Computing
the state space by allowing the introduction of new states, merging/removing of
existing states could be certainly done, e.g. using a reversible jump Markov chain
Monte Carlo[46] to decide when to add/merge/remove a state. However, this is
beyond the scope of this paper and remains a topic for future investigation.
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Algorithm 3: f() : Objective Function to Minimize

Input : {Yi}Wi=1: training set of Hanklet sequences;
labels: gesture-classes for each training sequence;
{Si}Mi=1 state space;
{Λc}Nc=1, {T c}Nc=1, {πc}Nc=1 parameters of the HMMs;
p set: active parameter subset

Output: Cum loss: loss over all the samples in the dataset; Grad: gradients

%% Accumulate loss for all the sequences in the training set;
Cum loss ← 0;
for i← 1 to W do

%% Compute loss for the i-th sequence;
D ← compute dissimilarity score matrix between Yi and {Si}Mi=1;
k ← labels(i);
[gk, zk]← applyViterbi(D,Λk, T k, πk);
[gc, zc]← minc6=k applyViterbi(D,Λc, T c, πc);
loss ← max(0, gk − gc + 1);
Cum loss ← Cum loss + loss;

%% If the sequence is misclassified, accumulate gradients. The optimization
%% algorithm will use the gradients to update the active parameter subset;
if loss> 0 then

Accumulate gradients Grad for the active parameter subset p set along
the inferred paths zk and zc for classes k and c respectively

end

end

5 Experiments

We evaluated our method on two datasets: MSRAction3D [23] and UTKinect-
Action [20]. The first dataset provides skeleton and depth data; examples of the
detected skeletons are shown in Fig. 1. The second dataset also provides RGB
data and sample images are shown in Fig. 2. We used only the skeleton data;
such data are corrupted by various levels of noise, which affects the recognition
accuracy. The code of our implementation has been written in Matlab4.

5.1 Setting of Parameters and Initialization

The maximal order of the LTI systems (that is the number of rows of the Hankel
matrix) determines the minimal length of the temporal window needed to build
a square Hankel matrix (8 if the order is 3; 15 if the order is 4). In the datasets
we used, some sequences contain fewer than 15 frames. To guarantee a fair
comparison with previous methods we have chosen to set the order to 3 instead
of removing the shorter training/test sequences.

The state space has been computed by applying the K-medoid algorithm to
subsets of Hanklets. For each class we have selected randomly 20 videos and we

4 Code available at http://www.dicgim.unipa.it/ cvip/people/lopresti/.
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Fig. 2. Samples from the UTKinect-Action dataset (source:UTKinect-Action website)

Methods [47]* [10]* [11]* [12] [24] [48]** [13]** [25] [23] [13]** Ours

Accuracy: 42.5% 54% 63% 65.7% 74.7% 85.5% 85.8% 86.5% 87.2% 88.9% 89%

Table 1. Accuracy on the MSRA-3D action dataset. * Results reported in [12]. **
Different splitting of training and test set. We note that [10] uses dynamic time warping,
while [11] uses a standard HMM.

have clustered the oberved Hankel matrices. The number of centroids K has been
set to 5. Thus, we used a state space composed of 100 Hankel matrices for the
MSRA-3D dataset and 50 Hankel matrices for the UTKinect-Action dataset.

5.2 Experiments on the MSRA3D dataset

The MSRAction3D dataset 5 provides the skeleton (20 joints) for 20 gestures
performed 2 or 3 times by 10 subjects. The dataset contains 3D coordinates
from 557 sequences of the following gestures: high arm wave, horizontal arm
wave, hammer, hand catch, forward punch, high throw, draw x, draw tick, draw
circle, hand clap, two hand wave, side-boxing, bend, forward kick, side kick,
jogging, tennis swing, tennis serve, golf swing, pickup and throw.

We use the same setting reported on the authors’ website: 10 sequences have
been filtered out because of the excessive noise on the skeletons; the splitting
of the data in training and test set is as follows: subjects 1, 3, 5, 7, and 9 for
training, the others for test.

Table 1 shows the comparison between our proposed approach and previous
works in terms of classification accuracy (number of correctly classified sequences
over number of sequences). On this dataset our method performs the best. Ta-
ble 2 and 3 show the confusion matrix and the classification accuracies per class
respectively. For half of the actions, our method attains 100% of accuracy. Only
for some classes, namely High Arm Waving and Hand Clap, the performance
decreases. As for the action High Arm Waving, most of the confusion is with
Horizontal Arm Waving. The decrease of performance in this case may be as-
cribable to the fact we are not considering the relative position of the 3D joints
when training our models. Most of the previous works we compare to, i.e. [23]
or [13], use more complicated feature representation or machinery. In contrast,
we only use information about the dynamics of the 3D skeleton joints.

5 http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
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T vs P HW HoW Ham HC FP HT DX DT DC HC 2HW SB Bend FK SK Jog TSw TSe GSw P-T

HW 58.3 33.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.3 0 0 0

HoW 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ham 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HC 0 8.3 8.3 58.3 16.7 0 0 0 0 0 0 0 0 0 0 0 8.3 0 0 0

FP 0 0 0 0 63.6 0 0 9.1 0 0 0 0 0 0 0 0 0 27.3 0 0

HT 9.1 0 0 0 0 63.6 0 0 0 0 0 0 0 0 0 0 0 0 27.3 0

DX 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

DT 6.7 0 0 0 0 0 0 93.3 0 0 0 0 0 0 0 0 0 0 0 0

DC 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

HC 0 0 0 0 0 0 0 0 0 93.3 6.7 0 0 0 0 0 0 0 0 0

2HW 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

SB 6.7 0 0 0 0 0 0 0 0 0 0 73.3 0 6.7 0 0 13.3 0 0 0

Bend 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

FK 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

SK 0 0 0 0 0 0 0 0 0 0 0 0 0 9.1 90.9 0 0 0 0 0

Jog 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

TSw 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

TSe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

GSw 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

P-T 0 0 0 0 0 0 0 0 0 0 0 0 35.7 0 0 0 0 0 0 64.3

Table 2. Confusion matrix for the MSRA-3D dataset.

Acc. HW HoW Ham HC FP HT DX DT DC HC 2HW SB Bend FK SK Jog TSw TSe GSw P-T

[12] NA NA 0 0 NA 14.3 35.7 NA 20 100 100 NA NA 100 NA NA NA 100 100 NA
[23] 91.7 100 83.9 25 72.7 72.7 53.8 100 100 100 100 86.7 93.3 100 100 100 100 100 100 64.3
Ours 58.3 100 100 58.3 63.6 63.6 100 93.3 100 93.3 100 73.3 100 100 90.9 100 100 100 100 64.3

Table 3. Accuracy on the MSRA-3D dataset per class.

5.3 Experiments on the UTKinect-Action dataset

The UTKinect-Action dataset 6 provides the skeleton (20 joints) for 10 actions
performed twice by 10 subjects. The dataset contains 200 sequences of the fol-
lowing gestures: walk, sit down, stand up, pick up, carry, throw, push, pull, wave
and clap hands. Six sequences were too short to compute the Hankel matrices
and have been filtered out. As done in [20], we performed the experiments in
leave-one-out cross-validation (LOOCV). In this dataset, one of the subject is
left-handed and there is a very high variance in the length of the sequences (the
length ranges from 5 to 120 frames). Moreover, there is a significant variation
among different realizations of the same action: some actors pick up objects with
one hand, while others pick up the objects with both hands. The individuals can
toss an object with either their right or left arm, producing different trajectories.
Finally, actions have been taken from different views and, therefore, the body
orientation varies.

As shown in Table 4, our method attains performance that approaches that
reported by [20], [27]. Considering the challenges in this dataset, and the limited
number of sequences available for training, the accuracy we get is quite high. Ac-
curacy is somewhat limited in this experiment because the Hanklets are sensitive
to the order the joints are considered, therefore it cannot discriminate between
two samples of the same action in which one involves a left limb and the other
one a right limb (i.e. in the class Throw).

In this experiment, we use the same joints as in [20]. We center the points
on the hip center at each frame and use the remaining 11 joints to compute the
descriptors. Table 5 reports the confusion matrix for the 10 classes. Most of the
confusion is between the actions walk and carry. This is probably due to the fact

6 http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
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Accuracy Walk SitDown StandUp PickUp Carry Throw Push Pull WHands CHands Avr

[27] 90% 100% 100% 100% 68.4% 95% 90% 100% 100% 80% 91.5%
[20] 96.5% 91.5% 93.5% 97.5% 97.5% 59% 81.5% 92.5% 100% 100% 90.9%
Ours 63.16% 100% 100% 100% 83.33% 61.11% 90% 100% 85% 85% 86.76%

Table 4. Accuracy on the UTKinect-Action dataset.

True vs Predicted Walk SitDown StandUp PickUp Carry Throw Push Pull WaveHands ClapHands

Walk 63.16% 0 0 0 31.58% 0 5.26% 0 0 0

SitDown 0 100% 0 0 0 0 0 0 0 0

StandUp 0 0 100% 0 0 0 0 0 0 0

PickUp 0 0 0 100% 0 0 0 0 0 0

Carry 16.67% 0 0 0 83.33% 0 0 0 0 0

Throw 0 0 5.56% 5.56% 0 61.11% 16.67% 0 5.56% 5.56%

Push 5% 0 0 0 0 5% 90% 0 0 0

Pull 0 0 0 0 0 0 0 100% 0 0

WaveHands 0 0 0 0 0 0 0 0 85% 15%

ClapHands 0 5% 0 0 0 0 0 0 10% 85%

Table 5. Confusion matrix for the UTKinect-Action dataset.

that these actions, in terms of the dynamics of many of the joints involved in
the actions, are pretty indistinguishable. In such cases, features capturing the
3D joint spatial configuration may help to disambiguate.

6 Conclusions and Future Work

We have proposed a novel representation of a gesture in terms of temporal se-
quence of body motion templates. We have assumed that each motion template
represents the output of an atomic LTI system and can be represented by a
Hankel matrix. We have adopted a discriminative HMM to model the transition
from one LTI system to the next. We have allowed the discriminative HMMs
to share the same state space. This enables the gesture models to share LTI
systems and, therefore, body motion templates.

In experiments on two challenging gesture recognition benchmarks, our method
achieves state-of-the-art accuracy by considering only 3D joint trajectories. The
experiments suggest that dynamics of a suitable body pose/shape descriptor
may help to disambiguate in cases where 3D joints dynamics are too similar.

In future work, we will extend the Hanklet-based representation in order
to account for the temporal warping in the observed data. A limitation of the
Hanklet is that it is sensitive to the order the joints are used when computing
the Hankel matrix. This is problematic in cases where the same gesture can be
performed either with left or right limbs. We will investigate new techniques to
formulate the Hankel matrix that may overcome these limitations.

As for our discriminative HMM, we will investigate techniques that enable
the state space to adapt online by adding, removing or merging existing states.
We will also investigate the use of more complex dynamic Bayesian networks
to account for the temporal warping and switching of the LTI systems, thereby
removing the need for a sliding window approach.
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